徐云解答第二阶段的思路是讨论存在性问题,再将现在的收敛半径变为无穷大,从而在整个实数线上收敛。
如今在陈景润思维卡的加持下,徐云对于自己思路的把握又高了几分——这个方向没错。
随后他顿了顿,继续推导了起来。
“已知允许幂级数中的变量x取复数值时,幂级数收敛的值在复平面上形成一个二维区域,就幂级数来说,这个区域总是具有圆盘的形状。。。。。。”
“然后利用高斯函数的Fourier变换F{e?a2t2}(k)=πae?π2k2a2,以及poisson求和公式可以得到。。。。。。”
“考虑积分g(s)=12πi∮γzs?1e?z?1dz,其中围道应该是limk→∞gk(s)=g(s)。。。。。”(这些推导是我自己算的,这部分我不太确定正不正确,用了留数定理和梅林积分变换,要是有问题欢迎指正或者读者群私聊我,这种涉及到比较多数学问题的推导不是我的专精方向)
众所周知。
解析延拓就是指两个解析函数f1(z)与f2(z)分别在区域d1与d2解析,区域d1与d2有一交集d,且在区域d上恒有f1(z)=f2(z)。
这时便可以认为解析函数f1(z)与f2(z)在对方的区域上互为解析延拓,同时解析函数f1(z)与f2(z)实际上是同一函数f(z)在不同区域的不同表达式。
举个最简单的例子。
由幂级数定义的函数f1(z)=∑n=0∞zn在单位圆|z|
所以我们说函数f(z)=11?z是幂级数f1(z)在复平面上的解析延拓。
非常简单,也非常好理解。
徐云在第一阶段得到的广义积分在0c||Re(s)
“然后再引入Γ函数,它是阶乘函数在实数与复数域上的扩展,当它的宗量为正整数时,有Γ(n)=(n?1)!。。。。。。”
“这部分似乎可以用渐进概念来做个近似。。。。。。”
“如果近似到场论的话,相当于量子化自由Klein-Gordon场时,(+m2)?(x)=0,那么场算符就是?(x)=∫d3p(2π)312Ep(ape?ipx+ap?eipx)。。。。。。。”
“然后再把场算符代算回来。。。。。。”
半个小时后。
徐云忽然停下了笔,眉头微微皱了起来:
“激发电场。。。。。果然是和晶体有关。”
此时此刻。
徐云面前的算纸之上,赫然正写着几个Nabla算符。
要知道。
他之前虽然对推导过程进行过渐进处理,但本身是没有引入激发电场概念的,更别说徐云之前还完成了代算。
也就是说这几个Nabla算符并不是渐进项解开后出现的错误算子,而是与方程自身有关的参数。
更重要的是。。。。。